Equations & Constants

Common measurement units:

- Length:
 - $* 1 \text{ Å} = 10^{-10} \text{ m}$
 - * $1 \,\mathrm{AU} = 1.496 \times 10^8 \,\mathrm{km}$
 - * $1 \text{Ly} = 9.46 \times 10^{12} \text{ km}$
 - * $1 \text{ pc} = 3.09 \times 10^{13} \text{ km}$
 - * 1 R_{MW} (Milky Way radius) $\approx 17 \, \text{kpc}$
- Mass:
 - Atomic unit: $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$ $= 931.5 \text{ MeV} c^{-2}$

– Milky Way mass:
$$1 \,\mathrm{M}_{\mathrm{MW}} \approx 1.25 \times 10^{12} \,\mathrm{M}_{\odot}$$

Particle	Mass (u)
Electron (e^-)	5.486×10^{-4}
Proton (p^+)	1.0073
Neutron (n^0)	1.0087
Hydrogen (^{1}H)	1.0079
Deuterium (D or ^{2}H)	2.0136
Helium-4 (4 He)	4.0015
Carbon-12 (^{12}C)	$12.\bar{0}$

• Miscellaneous:

- Force: $1 \text{ N} \text{ (newton)} = 1 \text{ kg m s}^{-2}$
- Pressure: 1 Pa (pascal) = 1 N m^{-2}
 - $1 \operatorname{Pa} = 9.87 \times 10^{-6} \operatorname{atm} (\operatorname{atmosphere})$
- Temperature: $X \text{ K} 273 \text{ K} = X^{\circ} \text{ C}$
- Energy:

>

- * Joule: $1 J = 1 \text{ kg m}^2 \text{ s}^{-2}$
- * Electron-volt: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- Luminosity: $1 \text{ W} \text{ (watt)} = 1 \text{ J} \text{ s}^{-1}$
- Angular measurements:

• Degree:
$$1^{\circ} = \frac{1}{360}$$
 of a circle
= $\frac{2\pi}{360}$ rad (radian)
• Arcminute ('): $1' = \frac{1}{60}^{\circ}$

* Arcsecond ("): $1'' = \frac{1}{60}'$

- Charge of proton: $q_{p^+} = 1.6 \times 10^{-19} \,\mathrm{C} = -q_{e^-}$ (charge of electron). The coulomb, C, is the fundamental unit of charge.

Solar brightness:

- Total luminosity: $1 L_{\odot} = 3.83 \times 10^{26} W$
- Apparent V-band magnitude: $m_{V,\odot} = -26.9 \,\mathrm{mag}$
- Absolute V-band magnitude: $M_{V,\odot} = 4.83 \text{ mag}$

Constants:

- Speed of light: $c = 2.998 \times 10^5 \,\mathrm{km \, s^{-1}}$
- Gravitational constant:
- $G=6.67\times 10^{-11}\,{\rm m}^3\,{\rm kg}^{-1}~{\rm s}^{-2}$ • Acceleration of gravity at Earth's surface: $g = 9.81 \,\mathrm{m \, s^{-2}}$
- Wien's Displacement Law constant: $\kappa = 2.898 \times 10^6 \, \mathrm{nm \, K}$
- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}}$

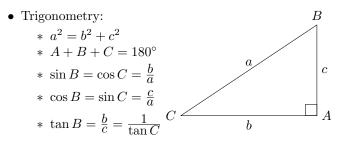
- Version 1: May 2, 2017
- Planck constant: $h = 6.626 \times 10^{-34} \,\mathrm{Js}$
- Boltzmann constant: $k_{\rm B} = 1.381 \times 10^{-23}\,{\rm J\,K^{-1}}$
- Coulomb constant: $k_{\rm C} = 9.0 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{C}^{-2}$
- Hubble constant today: $H_0 = 71.9 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$
- Mathematical constant: $e \approx 2.71828$. (e is associated with natural logarithms, exponential decays, etc.)

Equations

- Velocity: $v = \frac{d}{t}$, where d is distance and t is time.
- Acceleration: $a = \frac{v}{t}$ (see previous).
- Wavelength-frequency relation: $v = \lambda \nu$, where v = c for light in vacuum.
- Photon energy: $E = h\nu$,

- where h is Planck constant. Redshift: $z = \frac{\lambda_{obs} \lambda_{em}}{\lambda_{em}} = \frac{v}{c}$. Hubble's Law: $v = cz = H_0 d$. Parallax: $d = \frac{1}{p}$, where parallax, p, is in arcseconds (") to give distance in parsec (pc).
- Newton's Second Law (basic force law): $F_{net} = ma$, where m is mass and a is acceleration. Weight is force of gravity.
- Linear momentum: p = mv, where m is mass and v is velocity.
- Angular momentum: $L = mv_{\perp}r$, where m is mass and v_{\perp} is velocity perpendicular to r.
- Gravitational force: $F_{\text{grav}} = \frac{GMm}{r^2}$.
- Gravitational potential energy: $U = -\frac{GMm}{r}$
- Potential energy on Earth: U = mgh where h is height above Earth's surface.
- Kinetic energy: $K = \frac{1}{2}mv^2$ where m is mass.
- Escape velocity: v_{esc} = √(2GM/r).
 Electric or Coulomb force: F_E = (k_C q₁ q₂)/(r²), where q_# are charges.
 Next er²
- Newton's generalization of Kepler's 3rd Law: $p^2 = \frac{4\pi^2}{G(M+m)} a^3$, where p is orbital period and a
- is the total distance between masses M and m. Orbital Velocity Law: $M_{\text{encl}} = \frac{rv^2}{G}$, where at radius r, objects (in circular orbits) orbit with velocity v, and total mass enclosed by orbit is M_{encl} .
- Wien's Displacement Law: $\lambda_{\text{peak}} = \kappa T^{-1}$ where κ is the Wien's Displacement Law constant.
- Stefan-Boltzmann Law: $j = \sigma T^4$, where j is flux at surface, and σ is the Stefan-Boltzmann constant.
- Power (or luminosity if emitted): $P = \frac{E}{t}$.
- Luminosity-flux relation: L = A F, where A is area.
- Magnitude equation: $m_1 m_2 = -2.5 \log_{10} \left(\frac{F_1}{F_2} \right)$, where object #1 has magnitude m_1 and flux F_1 and object #2 has magnitude m_2 and flux F_2 .

ASTR181 Equations & Constants


- Absolute magnitude equation: $m - M = -5 + 5 \log_{10} d$, where m is apparent magnitude, M is absolute magnitude of the same object, and d is distance in parsecs (pc).
- Mass-energy equivalence: $E = mc^2$.
- Uncertainty principles (Δ of a quantity indicates its uncertainty or error, i.e., range the quantity might have):
 - * $\Delta x \Delta p \approx h$ where x is position and p is momentum
 - * $\Delta E \Delta t \approx h$ where E is energy and t is time

• Pressure:
$$P = \frac{F}{A}$$
, where F is force and A is area.

- Radiation pressure: P = F/c, where F is flux.
 Average kinetic (i.e., motion) energy of particles: $E \approx k_{\rm B} T.$
- Ideal gas law (gas pressure): $P = n k_{\rm B} T$, where n is number of particles per unit volume.
- Logarithm Rules, where b is the base (e.g. base-10) is $\log_{10}()$, or often $\log()$; natural logarithm is base e, so $\log_e()$, often $\ln()$):
 - * $\log_b(xy) = \log_b x + \log_b y$
 - * $\log_b\left(\frac{x}{y}\right) = \log_b x \log_b y$ * $\log_b(x^y) = y \log_b x$

 - * $b^{\log_b x} = x$
- Quadratic solution for $ax^2 + bx + c = 0$:
- $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Density: $\rho = \frac{m}{V}$ where m is mass and V is volume.

- Geometry:
 - Circumference of circle: $d = 2\pi r$
 - Area of circle: $A = \pi r^2$
 - Surface area of sphere: $A = 4\pi r^2$
 - Volume of sphere: $V = \frac{4}{3}\pi r^3$
 - Volume of cylinder: $V = \pi r^2 h$

Common prefixes:

- Giga = 10^9 or billion; denoted as G.
- Mega = 10^6 or million; denoted as M.
- Kilo = 10^3 or thousand; denoted as k.
- Centi = 10⁻² or one-hundredth; denoted as c.
 Milli = 10⁻³ or one-thousandth; denoted as m.
- Micro = 10^{-6} or one-millionth; denoted as μ and sometimes called *micron* when applied to meters.
- Nano = 10^{-9} or one-billionth; denoted as n.

Body	Radius	Mass	Orbital Semimajor	Orbital Period	Sidereal Rotation
	(km)	(kg)	Axis (AU)	(yr)	Period ^a (Earth days)
Sun	695,000	1.99×10^{30}			25.4
Mercury	2,440	3.30×10^{23}	0.387	0.2409	58.6
Venus	6,051	4.87×10^{24}	0.723	0.6152	-243.0
Earth	6,378	$5.97 imes 10^{24}$	1.00	1.0	0.9973
Mars	3,397	6.42×10^{23}	1.524	1.881	1.026
Jupiter	71,492	1.90×10^{27}	5.203	11.86	0.41
Saturn	60,268	5.69×10^{26}	9.54	29.5	0.44
Uranus	25,559	8.66×10^{25}	19.19	84.01	-0.72
Neptune	24,764	1.03×10^{26}	30.06	164.8	0.67
Pluto ^b	1,160	1.31×10^{22}	39.48	248.0	-6.39
Eris ^b	1,430	1.66×10^{22}	67.67	557.	15.8

^a Negative sign indicate rotation is backward relative to other planets.

^b Under the IAU definition of August 2006, Pluto and Eris are officially designated "dwarf planets."

Spring 2017