AY5, Summer Session I, 2008: Constants, Equations, Conversion Factors

Draft 1: July 11, 2008

1. Common prefixes (http://physics.nist.gov/cuu/Units/prefixes.html)

- (a) Giga = 10^9 or billion; denoted as G (e.g., 13.7 billion years = 13.7 Gyr).
- (b) Mega = 10^6 or million; denoted as M (*e.g.*, 100 million years = 100 Myr).
- (c) Kilo = 10^3 or thousand; denoted as k (*e.g.*, 11 kiloparsec = 11 kpc).
- (d) Centi = 10^{-2} or one-hundredth; denoted as c (*e.g.*, 3 centimeters = 3 cm)
- (e) Milli = 10^{-3} or one-thousandth; denoted as m (*e.g.*, 5 millimeters = 5 mm)
- (f) Micro = 10^{-6} or one-millionth; denoted as μ and sometimes called *micron* when modifying meters (*e.g.*, 24 micron = 24 μ m).
- (g) Nano = 10^{-9} or one-billionth; denoted as n (*e.g.*, 10 nanoseconds = 10 ns).
- 2. Common measurement units:
 - (a) Distance/length:
 - i. 1 AU (astronomical unit) = 1.496×10^8 km (average distance between Earth and Sun)
 - ii. 1 Å (Ångstrom) = $10 \,\mathrm{nm}$
 - iii. 1 Ly (light-year) = 9.46×10^{12} km (distance light travels in a year in a vacuum)
 - iv. 1 pc (parsec) = 3.09×10^{13} km
 - v. 1 R_{SUN} (or R_{\odot} ; solar radii) = 695,000 km
 - vi. 1 R_{EARTH} (or R_{\oplus} ; earth radii) = 6,378 km

vii. $z \text{ (redshift)} = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{rest}} = \frac{v}{c}$, where $\lambda_{observed}$ is the observed wavelength, λ_{rest} is the at rest wavelength of the light, v is velocity, and c is the speed of light.

- (b) Mass:
 - i. 1 M_{SUN} (or M_{\odot} ; solar masses) = 2×10^{30} kg
 - ii. 1 M_{EARTH} (or M_{\oplus}; solar masses) = 5.97×10^{24} kg
 - iii. 1 u = 931.5 MeV/c^2

Particle	Mass		
	(kg)	(u)	(MeV/c^2)
Electron (e^-)	9.109×10^{-31}	5.486×10^{-4}	0.5109991
Proton (p^+)	1.672×10^{-27}	1.0073	938.2723
Neutron (n^0)	1.675×10^{-27}	1.0087	939.5656
Deuterium (D)	3.344×10^{-27}	2.0136	1875.6134
Helium-4 (4 He)	6.645×10^{-27}	4.0015	3727.3803

Table 1: From Modern Physics, 2nd Ed. by Kenneth Krane

(c) Miscellaneous:

- i. c (speed of light) = $3 \times 10^5 \,\mathrm{km/s}$
- ii. $X \text{ K} + 273 \text{ K} \text{ (Kelvin)} = X^{\circ} \text{ C}$, where X is any number
- iii. 1 L_{SUN} (or $L_{\odot};$ solar luminosity) = 3.8×10^{26} watts (W), where 1 W = 1 joule/s (or J/s)
- iv. 1 J = 1 kg m² s⁻²
- v. 1 eV = 1.602×10^{-19} J
- vi. 1 Pa = 1 N/m² = 9.87×10^{-6} atm (pressure)
- vii. 1 N = 1 kg m s⁻²
- 3. Useful constants and common symbols:
 - (a) c (speed of light) = $3 \times 10^5 \, \text{km/s}$
 - (b) Wien's Law constant $\kappa = 2.898 \times 10^6 \text{ nm K}$
 - (c) Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}}$
 - (d) Gravitational constant $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
 - (e) Planck constant $h = 6.626 \times 10^{-34} \,\text{Js} = 4.136 \times 10^{-15} \,\text{eVs}$
 - (f) Boltzmann constant $k = 1.381 \times 10^{-23} \text{ J/K} = 8.617 \times 10^{-5} \text{ eV/K}$
 - (g) Hubble constant $H_0 = 70 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$
 - (h) Solar units
 - i. L_{SUN} (or L_{\odot}; solar luminosity) = 3.8×10^{26} watts (W), where 1 W = 1 joule/s (or J/s)
 - ii. M_{SUN} (or M_{\odot} ; solar masses) = 2×10^{30} kg
 - iii. R_{SUN} (or R_{\odot} ; solar radii) = 695,000 km
 - (i) λ (wavelength)
 - (j) Δ in front of a term indicates a change in the value. For example, ΔE indicates a change in energy.
- 4. Equations
 - (a) Wien's Law: $\lambda_{peak} = \kappa T^{-1}$
 - (b) Stefan-Boltzmann Law: $j = F = \sigma T^4$
 - (c) Luminosity-flux relation: $L = A \cdot F$, where A is area, in general, and $L = 4\pi R^2 F$ for a sphere.
 - (d) Wavelength-frequency relation $c = \lambda \nu$, where ν is the frequency in s⁻¹ (or cycles per second) and λ is the wavelength in meters to get c in meters per second.
 - (e) Photon energy: $E = h\nu = hc/\lambda$
 - (f) Average kinetic (*i.e.*, motion) energy of particles: E = kT
 - (g) Mass-energy equivalence: $E = m c^2$, where m is mass and c is the speed of light.
 - (h) Hubble's Law: $v = H_0 d$
 - (i) Gravitational force: $F_{grav} = \frac{GMm}{r^2}$

- (j) Pressure: P = F/A, where F is a force and A is the area.
- (k) Newton's version of Kepler's 3rd Law: $p^3 = \frac{4\pi^2}{G(M+m)}a^3$, where p is the period of the orbit and a is the average distance between the two masses M and m.
- (l) Ideal gas law (gas pressure): P = n k T, where n is the number of particles per unit volume
- (m) Radiation pressure: P = F/c, where F is the flux.
- (n) Generic magnitude (not necessarily apparent magnitude): $m_1 m_2 = -2.5 \log_{10} \left(\frac{F_1}{F_2}\right)$, where object #1 has magnitude m_1 and flux F_1 and object #2 has magnitude m_2 and flux F_2 .
- (o) Absolute magnitude: $m M = -5 + 5 \log_{10} d$, where *m* is the apparent magnitude and *M* is the absolute (intrinsic) magnitude of the same object and *d* is the distance from the observer to the object *in parsecs*.