
THE FORMATION OF SUBSTELLAR COMPANIONS DUE 
TO PROTOSTELLAR DISK INSTABILITIES:  

MODELING THE EFFECTS OF THE GRAVITATIONAL 
ENVIRONMENT 

 

 
 

Kathy Cooksey 
Valparaiso University 

 



 
 
 
 
 
 
 

THE FORMATION OF SUBSTELLAR COMPANIONS DUE TO 
PROTOSTELLAR DISK INSTABILITIES: MODELING THE 

EFFECTS OF THE GRAVITATIONAL ENVIRONMENT 
 

Kathy Cooksey 
Valparaiso University 

 
Advisor: Dr. Brian K. Pickett 
University of Purdue Calumet 

 
Committee: Dr. Bruce Hrivnak, Dr. Donald Koetke, 

Department of Physics and Astronomy; 
Dr. Ken Luther, Department of Mathematics, 

Valparaiso University 
 
 

Submitted to the College of Arts and Sciences 
in partial fulfillment of the requirements 

for the degree 
Bachelor of Science with Honors in Physics 

in the Department of Physics and Astronomy, 
Valparaiso University, Indiana 

May 2003 
 
 
 
 

Honor Code: I have neither given or received nor have I tolerated others’ use of unauthorized aid. 



  ii 

ACKNOWLEDGEMENTS 
 

I am very grateful to my advisor Dr. Brian K. Pickett for his support and guidance 
during my college career and especially during this project.  I would also like to thank my 
honors thesis committee: Dr. Bruce Hrivnak, Dr. Donald Koetke, and Dr. Ken Luther.  
This work was supported by the College of Arts and Sciences and the Department of 
Physics and Astronomy of Valparaiso University, Indiana.    

Last but not least, I must thank my fellow physics major and best friend, Nicolas 
George.  Without him, I would not be the person I am today. 
 



  iii 

ABSTRACT 
 
Modern observations have shown that the majority of stars are found in binary or even 
multiple star systems and that these systems form during the early stages of the stellar 
evolution.  In addition, the number of stars with known planetary companions has 
increased dramatically in recent years.  However, the process of stellar and substellar 
companion formation is not well understood.  This study builds upon the work of Pickett 
et al., who have simulated the evolution of environmentally isolated, self-gravitating, 
rapidly rotating protostellar disks in order to characterize the conditions under which 
substellar companions form in condensations of gas and dust.  Using a modified version 
of their three-dimensional hydrodynamics code, this study examines the gravitational 
effects of the surrounding environment on the evolution of a protostellar disk.   
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1. INTRODUCTION 
 
 Observations show that the majority of stars are part of binary or multiple star 
systems.  Indeed, stars appear to form in these systems very early in their evolution 
(Tohline 2002).  In addition, recent advances in technology have allowed for improved 
detection of extrasolar planets, and over a hundred planets have been discovered to date 
(Schneider 2003).  However, the process of multiple star system formation or planet 
formation is not well understood.  This study builds upon the work of Pickett et al. (2000) 
and seeks to increase the realism with which the conditions of early stellar evolution are 
modeled and explore the resulting effects on substellar companion formation.   
 
1.1. Star Formation 

Stars form in cold, dense regions comprised mostly of molecular hydrogen and 
helium called giant molecular clouds (GMCs).  In these clouds, denser regions of self-
gravitating, slowly rotating material called molecular cloud cores (MCCs) develop, 
perhaps due to turbulent motions in the GMCs or collapsing magnetic fields (Tohline 
2002).  Eventually, an MCC becomes dense enough to begin gravitational collapse.  As 
the core contracts to stellar density, it rotates faster and forms an extended, rapidly 
rotating disk of gas and dust at its equator.  Material from the enshrouding molecular 
cloud continues to accrete onto the core, now called a protostar.  As the embedded 
protostar evolves towards the main sequence, it develops a stellar wind, which escapes 
along the axis of rotation where the density of material is least.  The disk transports 
angular momentum away from the protostar, and material with high angular momentum 
begins accreting preferentially onto the protostellar disk.  This allows the opening angle 
of the stellar winds to increase, which eventually clears away the surrounding region of 
the molecular cloud.  At this point, the now pre-main sequence star and protostellar disk 
are observable in visible wavelengths.  
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2. SIMULATION PROCESS 
 

Before the young stellar winds dissipate the protostellar disk, after about 106-107 
years, stellar and substellar companions (e.g., brown dwarfs, giant gaseous protoplanets) 
may form from the condensation of the remaining gas and dust in the disk.  It is this brief 
phase in the stellar lifetime that is the focus of this study.  
 
2.1. 3-D Hydrodynamics Code: Pickett et al. (1998, 2000) 

Previously, Pickett et al. have simulated the evolution of environmentally 
isolated, self-gravitating, rapidly rotating protostellar disks in the linear regime with their 
fully three-dimensional hydrodynamics code.  The code creates a three-dimensional disk 
by loading a two-dimensional axisymmetric model in equilibrium onto a three-
dimensional cylindrical grid with equatorial plane symmetry and resolution (r, ϕ, z), such 
as (128, 128, 16).  The model is initially in thermal, gravitational, and rotational force 
balance.  The disk may be artificially heated or cooled to affect possible physical 
conditions of the protostellar environment and may be given an initial random density 
perturbation to stimulate the growth of nonaxisymmetric structure in an unbiased manner.  
The 3-D hydrodynamics code numerically calculates the accelerations and the movement 
of material to second order accuracy in space and time on a cylindrical grid, using the 
Poisson equation and the equations of hydrodynamics, namely, the mass continuity 
equation, the equations of motion, and an internal energy equation (Pickett 1995).  At 
every hydrodynamics step, a Fourier transform in ϕ of the density in the equatorial plane 
gives the Fourier amplitudes am and phase angles bm as a function of time t and 
cylindrical radius j: 
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where the azimuthal grid spacing is δϕ = 2π/lMAX, l is the azimuthal grid number, and lMAX 
is the azimuthal resolution of the grid.  The relative amplitudes Am, which measure the 
strength of a given disturbance with m-fold azimuthal symmetry (Fig. 1), and phase 
angles ϕm, which measure the coherence of a disturbance across the disk, are defined as 
follows: 
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The approximate equality in equation (3) relates Am to the difference, δρm, between a 
cell’s density and the initial density over the initial density, ρo, for each possible m-value. 

The Fourier coefficients and the density in the equatorial plane are written to file 
every 300 computational steps for adequate time resolution during analysis.  Other 
information about the disk (e.g., mass, angular momentum distribution) are stored every 
2000 steps.  Simulations are run until significant mass or angular momentum leaves the 
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computational grid or the center of the disk moves more than one cell from the center of 
the grid, signifying that the disk has evolved beyond the capabilities of the code.   

After a few rotations, the initially randomly perturbed disk begins to organize into 
over-dense regions that may be precursors to spiral arms or, eventually, substellar 
companions.  Such disturbances may be seen in equatorial density plots, which are 
convenient measures of the activity in the disk in the non-linear regime (Fig. 1).  
However, early in their development, the disturbances are best seen in density 
perturbation plots of the relative amplitudes (Fig. 1).  A disturbance with a well-defined 
e-folding time τm and pattern period Pm over a significant portion of the disk is 
considered a mode (Fig. 2).  Essentially, the superposition of the density perturbation 
plots for all m-values yields the equatorial density plot (Fig. 1), much the same way that 
the sum of terms in a Fourier expansion yields the original function.  In most cases, the 
first four m-values contribute most significantly to the total disturbance.   

Pickett et al. have developed their code to include most of the thermal energetics 
expected in the disk (e.g., compressional heating due to shocks).  In Pickett et al. (2000), 
hereafter Paper I, they studied the effect that increasingly realistic internal energy 
constraints had on the evolution of an environmentally isolated, self-gravitating, rapidly 
rotating protostellar disk in the linear regime.  Here, linear refers both to the small size of 
the density perturbation, when Am < 0.1, and the exponential growth of the disturbance. 
 
2.2. 3-D Hydrodynamics Code: Gravitational Environment 

It is believed that the majority of stars form in clusters of gravitationally bound 
stars (Lada et al. 1993).  Therefore, the next step in making the 3-D hydrodynamics code 
more realistic is the inclusion of the presumably destabilizing effects of neighboring stars 
on the evolution of a protostellar disk.  Towards this end, a supplemental program has 
been developed to generate a star cluster based on the following parameters: number of 
cluster objects, cluster member mass range, cluster radius, and disk radius and mass (see 
Appendix A).  First, the program assigns each cluster member a random location (x, y, z) 
in the Cartesian coordinate system so that the distance from the origin is equal to or less 
than the specified cluster radius (Fig. 3); this assumes that the cluster members are 
randomly distributed in space, as is seen in young clusters (Lada et al. 1993).  The 
program next uses the Monte Carlo method to assign each member a mass.  Observations 
show that there are generally more low mass stars than high mass ones, and the initial 
mass function (IMF) for low mass stars is a probability distribution that describes this 
trend: 
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where MOBJ is the mass of the cluster member and the minimum object mass, MMIN, 
normalizes the function (Fig. 4; Lada et al. 1993).  The program saves the locations and 
masses of the specified number of cluster members to a file for use in the 3-D 
hydrodynamics code and other analysis. 

The clusters generated by this program showed no obvious bias in the locations 
assigned by the random number generator.  To demonstrate this more quantitatively, the 
spatial distributions were subjected to a more rigorous test of randomness (Fig. 5).  
Linear regressions were performed individually on the x, y, and z positions as a function 
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of the cluster member, which was assigned a number in the order that it was generated.  If 
a distribution were truly random, the slope of the linear regression for a large data set 
would be zero.  The x and y distributions were within a half standard deviation of zero, 
and the z distribution was within two standard deviations for the generated clusters used 
in this study.   

The 3-D hydrodynamics code has been modified to import the masses and 
positions of the cluster members (see Appendix B).  The code calculates the gravitational 
potential ΦG,i due to each member of mass Mi a distance di from the center of each cell  
(j, l, k) in (r, ϕ , z) of the computational grid: 
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(Fig. 6).  The grid itself can be placed at any location with respect to the Cartesian 
coordinate system discussed previously.  For each computational cycle, the code updates 
the total internal gravitational potential ΦINT for each cell and adds the perturbation ΦG,i 
of the N cluster members to obtain the total potential ΦTOT: 
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To test that the modifications of the code worked as expected, a point source of 
comparable mass located within a few protostar radii was included in a test simulation of 
a well-understood protostar model known to develop a dominant, global m = 2 mode in 
simulations without the gravitational influence of a star cluster.  Very rapidly, the model 
moved off the computational grid as expected for such extreme conditions.   
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   m = 1    m = 4  m = 3  m = 2

Equatorial Density  
Figure 1: Essentially, the superposition of the density perturbation plots for all m-values forms the 
equatorial density plots.  Generally, the m = 1-4 components are the most important.  The evolution of a 
well-studied protostar model (Pickett 1995) was dominated by a global m = 2 mode, as seen in the 
equatorial density plot where black is for ρ = 0.3 and white for ρ = 3x10-7 (bottom).  The density 
perturbation (top) show the very coherent over-density of material in the disk due to the m = 2 component 
of the disturbance; the m = 4 component has some elements of the m = 2 component and is also coherent.  
The scale for the density perturbation plots is black for log(Am) = 0 and white for log(Am) = -5.  For all 
images, the time is 9.78 central initial rotation periods (CIRPs, see Appendix C), the black outline indicates 
the initial size of the model, and the sense of rotation is counter-clockwise.   



  6 

 
Figure 2: The general evolution of the m-component of a disturbance in the disk can be characterized by 
plotting the time evolution of log(Am), as defined by equation (3).  Initially, the material in the disk is 
randomly distributed.  Then, a disturbance with m-fold symmetry may grow in some portion of the disk.  
When this growth is exponential, it is called the linear growth regime, and the slope of this portion of the 
amplitude plot is the e-folding time τm.  The disturbance rotates with a pattern period Pm that may be 
measurable during the growth regime.  The disturbance will either continue to grow, saturate, or dissipate 
after the linear growth regime.  When the disturbance continues to grow, it suggests that the apparent linear 
growth regime was a rapid burst of activity and growth within a longer growth period, and growth times are 
measured for both periods.  When the disturbance saturates, it persists at its greatest log(Am) level for the 
remainder of the simulation and rotates with a specific Pm.  In some cases, the protostellar disk becomes 
stable to nonaxisymmetric structure, and the disturbance dissipates (i.e., log(Am) decreases).  Many models 
evolved with the 3-D hydrodynamics code develop different disturbances, with characteristic τm and Pm, in 
separate regions of the disk.   
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Figure 3: For this study, the randomly generated clusters, described in § 2.2, had radii of 1.5x10-2 pc (top), 
1.5x10-3 pc (bottom), and 1.5x10-4 pc, which was a scaled version of the 1.5x10-2 pc cluster.  The mass 
range for the 50 members is 0.2-10 MSUN.  The marker sizes indicate the mass range of the objects.  The 
computational grid is approximately at the center of this schematic (cross).   
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Figure 4: The initial mass function (IMF) for low mass stars, described by equation (5), constrains the 
mass distribution so that there are more low mass stars than high.  The distributions are shown for the 
1.5x10-2 pc (top) and the 1.5x10-3 pc clusters (bottom).  In the program that generates star clusters for the  
3-D hydrodynamics code, each member is randomly assigned a mass and probability (points).  If this 
probability is less than or equal to the probability calculated using the assigned mass and IMF (line), the 
program accepts this mass and records it to file.  Otherwise, the mass is discarded, and the process repeats 
until every cluster member has been assigned a mass obeying the IMF. 
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Figure 5: The x, y, and z positions were plotted as a function of the cluster member, which was assigned a 
number in the order that it was generated, for the 1.5x10-2 pc (top) and 1.5x10-3 pc clusters (bottom).  
Linear regressions were performed on each distribution as a quantitative test of the randomness of the 
cluster-generating program.  For both clusters, the x and y distributions were within a half standard 
deviation, and the z distributions were within two standard deviations.  
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Figure 6: The protostellar disk model is centered on a cylindrical grid with resolution (r, ϕ, z), and the 
center of each cell has coordinates (j, l, k) in this coordinate system.  The star cluster is centered on a 
Cartesian coordinate system, which may or may not correspond to the disk center.  Each cluster member is 
a point source of mass Mi with location (x, y, z).  To calculate the gravitational perturbation as defined by 
equation (6), the 3-D hydrodynamics code transforms the star’s location into grid coordinates and 
calculates di, the distance between the star and the cell center.   
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2.3. Protostellar Disk Model 
The current paper focuses on the protostellar disk model thoroughly studied under 

progressively more energetically realistic simulations in Paper I.  The local temperature 
was held fixed at its initial axisymmetric distribution in the locally isothermal case (ISO).  
As a better thermal approximation, the entropy remained similarly fixed for the locally 
isentropic case (ISE).  These cases allowed significant thermal energy to be lost through 
radial motion during the course of the evolution.  Pickett et al. also incorporated an 
internal energy equation into the hydrodynamics code to account for heat loss at the 
shock fronts of material moving azimuthally.  The internal energy equation conserved 
entropy and permitted heating and cooling.  For the adiabatic case (ADI), both the 
heating and cooling terms were set to zero, rendering irreversible compression 
unimportant.  Finally, artificial viscosity approximated the heating due to shock fronts in 
the adiabatic with artificial viscosity case (ADI + AV); no cooling term was used.  In 
Paper I, Pickett et al. discovered that the dominant m = 2 mode in the ISO simulation 
became less coherent and strong through the ISE and ADI simulations.  Ultimately, shock 
heating in the ADI + AV simulation stabilized the disk, and little nonaxisymmetric 
structure developed (Fig. 7).   

The gravitational influence of a star cluster was incorporated in addition to the 
thermal conditions of the ADI + AV case for the same protostellar model in all 
simulations of the current study.  The protostellar disk model studied here, as in Paper I, 
has a mass equal to 0.5 MSUN and a radius of 0.1 AU.  Most protostellar disks are several 
solar masses and ~10-103 AU across (Tohline 2002).  Star clusters in star forming regions 
are ~10-1 pc in diameter with ten to a hundred members (Lada et al. 1993).  Since the disk 
model is smaller than average, three simulations were run with cluster radii of 1.5x10-2 
pc, 1.5x10-3 pc, and 1.5x10-4 pc and 50 cluster members of masses between 0.2-10 MSUN 
(Fig. 3).  The two simulations with the larger cluster radii ran for over 33 minimum initial 
rotation periods (MIRPs), which was the time presented in Paper I.  Here, a MIRP is the 
orbital period of material at the inner edge of the disk, at the star-disk boundary, and 
represents the fastest orbital motion.  In the simulation with the smallest cluster radius, 
the gravitational perturbation was too great and pulled the model from the computational 
grid in less than 7 MIRPs.  All simulations were given a small random initial perturbation 
with magnitude δρ/ρo ≤ 0.005 in the region 0.5 ≤ j/Req ≤ 1.0, as done in all cases of Paper 
I.  Req is the initial equatorial radius of the model; the units used in this paper are 
discussed in Appendix C. 
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Figure 7: “Comparison of final states.  Shown are color scales [made grayscales] of the equatorial density 
at the end of the four main simulations using (128, 64, 16) resolution discussed here and in Paper I [Pickett 
et al. 1998].  The images are from the locally isothermal case at t = 20.0 minimum initial rotation periods, 
or MIRPs (top left), the ADI case at t = 38.0 MIRPs (top right), the locally isentropic case at t = 33.0 
MIRPs (bottom left), and the ADI + AV case at t = 33.0 MIRPs (bottom right)” (Fig. 11, Paper I; 
reproduced from Astrophysical Journal). 
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3. ANALYSIS and RESULTS 
 
3.1. Procedure 

To compare quantitatively the change that the gravitational environment induced 
on the previously marginally stable protostellar disk, the e-folding times  τm and pattern 
periods Pm of the m = 2-4 components of the disturbance were determined for the 
simulations with 1.5x10-2 pc and 1.5x10-3 pc clusters.  As mentioned previously, the 
simulation with the 1.5x10-4 pc cluster evolved very rapidly and violently, and no 
quantitative analysis could be performed.   

To view the general evolution of the disk, the log of the relative density, log(Am), 
of each radius was plotted over time (Fig. 8).  This three-dimensional Fourier amplitude 
surface is made two-dimensional by adjusting the perspective at each radial position.  The 
original analysis code of Paper I that generates the Fourier amplitude surface was only 
capable of plotting 20 MIRPs.  To fit the full 33 MIRPs of the simulations with the star 
clusters, the MIRP was scaled by a factor of 7/4.  The growth times and errors were later 
adjusted by the same factor to obtain the appropriate value in MIRPs (see Appendix C).  
The Fourier amplitude surface allowed for an intuitive understanding of which region of 
the disk underwent a linear growth to saturation and whether the component later 
dissipated.   

The slopes of the linear growth regime at each radius were measured by a least 
squares fit of the relative amplitude (Fig. 9).  Again, the analysis code of Paper I was 
used, and the MIRP was scaled, as discussed previously.  On occasion, there was a brief, 
short linear growth but also an overall trend of continuous growth; both were fitted (Fig. 
2).  Short, steep linear growth regimes led to larger errors compared to the growth times.  
The saturation level relates to the strength of the m-value component.  For instance, the m 
= 2 component in Figure 9 saturated at ~18%, whereas the m = 3 saturated around ~6% 
(see Table 1).  Recall that an Am ~  δρm/ρo, and so A3 ~6% means that a three-armed 
disturbance has created an over-density of about 6% of the initial value.  Once the growth 
times of the individual radii were measured and compiled, they were examined for 
regions in which the m-value grew in about the same time during the simulation with 
approximately the same growth time.  These values and their root mean square errors 
were averaged and corrected by the 7/4 scale factor to obtain the growth times and errors 
(see Appendix C).  The values quoted in Table 1 are for the m-components of the 
disturbance that grew with the same τm and rotated with a distinct Pm in the same radial 
range. 

In the simulations presented here and in Paper I, the protostellar disk model 
included the central protostar and a continuous star-disk boundary at 0.15 Req.  The 
protostar developed disturbances with growth times and pattern periods.  Because the 
focus of this study was the formation of substellar companions through disk instabilities, 
only the disk region of the model was thoroughly analyzed for developing disturbances.  

The pattern periods were determined by the auto-correlation function, which 
performs a sinusoidal least squares fit to the Fourier phase angle ϕm, and the 
periodogram, which is a “time series analysis tool that produces power spectra for each 
radius” (Pickett 1995).  When a simulation evolves cleanly and with a dominant mode, 
the pattern period can be measured during the linear growth regime.  For the simulation 
presented here, the evolution of the disk was more complicated, and the pattern periods 
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were fit to the time for which the m-value remained at its saturation level.  It was not 
necessary to correct the pattern periods with the scale factor.   

The auto-correlation function plots the time-varying cos(ϕm), in a manner similar 
to the plot of the Fourier amplitude surface, for the radial range of interest (top, Fig. 10).  
This permitted a visual verification of the coherence of the m-component.  The pattern 
period was measured by fitting a sinusoid to the combined cos(ϕm) (bottom, Fig. 10).  
These values and errors are presented (Table 1).  The periodogram used a Fourier 
transform of the phase angles to create power spectrum of the frequency for each radius 
of the disk (top, Fig. 11).  The pattern period was measured by finding the peak in the 
combined power spectrum (bottom, Fig. 11).   
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Figure 8: This Fourier amplitude surface of the m = 2 disturbance in the simulation with the 1.5x10-2 pc 
cluster gives a general overview of the evolution of all parts of the disk.  Each line traces log(A2) at a 
specific radius for the 33 MIRPs of the simulation; the perspective has been adjusted at each radius j to 
make this three-dimensional plot align properly on the two-dimensional axis.  The regions of initial random 
distribution, linear growth, and saturation as described in Figure 2 are generally indicated.   
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Figure 9: The e-folding time and error at incremental radii j were measured by a least squares fit to the 
linear growth regime for m = 2-4.  The growth times quoted in Table 1 are the averaged and scaled values 
(see § 3.1) over the radial range in which an m-component of the disturbance grew in approximately the 
same τm during the simulation with a distinct pattern period.  These images show the fits in about the 
middle of the radial range of the simulations with the 1.5x10-2 pc (left) and 1.5x10-3 pc clusters (right) for 
the m-value indicated.  
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Figure 10: To find the pattern period, the auto-correlation function plots the time evolution of cos( ϕm), 
times some amplitude, for the radial range with the common growth time (top).  As in the Fourier 
amplitude surface, the perspective has been adjusted at each radius j (Fig. 8).  The radial range may be 
adjusted to focus on the largest region that is most coherent for the length of the simulation.  The pattern 
period Pm (AC) and range quoted in Table 1 is from the sinusoidal least squares fit to the combined cos(ϕm) 
(bottom).  These images are for m = 2 for the simulation with the 1.5x10-2 pc cluster.  The peaks of the 
combined cosine function appear flat in order to display the information at the top of the figure.
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Figure 11: In a process similar to that used with the auto-correlation function (Fig. 10), the periodogram 
produces a power spectrum of the frequency for each radius j in the radial range with a common growth 
time (top).  The peak frequency of the combined power spectrum leads to the pattern period Pm (P) listed in 
Table 1 (bottom).  These images are for m = 2 for the simulation with the 1.5x10-2 pc cluster.
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Property 
(r, ϕ, z) 

1.5x10-2 pc Cluster
(128, 128, 16) 

1.5x10-3 pc Cluster 
(128, 128, 16) 

ADI + AV 
(128, 64, 16) 

ISO 
(128, 64, 16) 

m = 2 
τ2 … 1.04 ± 0.35 1.12 ± 0.52 3.0 2.4 

Range … 0.51-0.84 0.47-0.66 0.30-0.62 0.26-0.59 
P2 (AC)… 3.98 ± 0.10 4.099 ± 0.048 3.6 3.5 
P2 (P)… 4.00 4.13 — — 

Saturation … 18% 18% 16% 100% 
m = 3 

τ3 … 1.94 ± 0.38 1.68 ± 0.42 0.99 1.2 
Range … 0.52-0.83 0.47-0.69 0.04-0.26 0.06-0.15 
P3 (AC)… 3.76 ± 0.29 4.18 ± 0.21 0.99 1.0 
P3 (P)… 3.99 4.22 — — 

Saturation … 6% 6% 13%  1% 10% 
m = 4 

τ4 … 2.56 ± 0.48 2.99 ± 0.41 0.66 0.75 
Range … 0.69-0.85 0.66-0.86 0.04-0.20 0.03-0.26 
P4 (AC)… 3.90 ± 0.19 4.07 ± 0.20 1.0 1.0 
P4 (P)… 3.95 4.08 — — 

Saturation … 10% 10% 10%  1% 32% 
Table 1: The e-folding times τm (MIRPs), radial range (Req), and pattern periods Pm (MIRPs) as determined 
by the auto-correlation function (AC) and the periodogram (P) for m = 2-4 for the simulations run with 
different cluster sizes are listed.  Similar data for the ADI + AV and ISO cases are reproduced from Paper I; 
the pattern periods were determined from either the auto-correlation function or the periodogram.  For this 
study, the saturation levels of Am and their stability (e.g., 10%  1% denotes decrease) have been 
approximated from Figure 9 and Figures 2 and 7 of Paper I. 
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3.2. Results and Simulation Comparison 
The gravitational influence of the 1.5x10-2 pc and 1.5x10-3 pc clusters changed the 

evolution of the protostellar disk model enough so that it developed some persistent 
nonaxisymmetric structure (Fig. 12).  Table 1 presents the results from the two 
simulations of the current study and the ADI + AV and ISO cases of Paper I.  Though the 
simulations incorporating the gravitational influence of a star cluster also included the 
same thermal conditions as used in the ADI + AV case, the term ADI + AV case will 
only refer to the simulation studied in Paper I.  For all simulations, the m = 1 component 
of the disturbance did not lead to a coherent growth over a significant portion of the disk 
and has not been included in this discussion.  In Paper I, Pickett et al. used either the 
auto-correlation function or the periodogram to measure the pattern periods for m = 2-4.  
For m = 3-4, Paper I presented the results for within the central region of the protostellar 
disk model, which has its initial star-disk boundary at 0.15 Req.  Because this study 
focused on the disturbances in the disk, there can be no quantitative comparison between 
the results of simulations with star clusters and the cases from Paper I for m = 3-4.  
However, it should be noted that the previous ADI + AV case produced no m = 3-4 
components in the disk, whereas the present cases do. 

Overall, the simulation with the 1.5x10-3 pc cluster developed more 
nonaxisymmetric structure than that with the 1.5x10-2 pc cluster (Fig. 12).  The m = 2 
component of the disturbance dominated in both simulations that included the star 
clusters, as seen by the coherence and strength of the m = 2 density perturbation plots 
(top, Fig. 13).  The m = 3 component in the simulation with the 1.5x10-3 pc cluster was 
more coherent and strong than that with the 1.5x10-2 pc cluster (middle, Fig. 13).  For 
both simulations, the m = 4 components were complicated and varied throughout the disk 
(bottom, Fig. 13).   

In Paper I, Pickett et al. discovered that the growth times, radial ranges, and 
pattern periods of the m-value components of the disturbance did not change much for the 
different simulations.  The main change occurred in the saturation level of the m-values 
and the duration for which they persisted at that level.  For all cases of Paper I, the m = 2 
grew in 2.4-3.5 MIRPs with a pattern period ~3.5 MIRPs and stayed at the saturation 
level for the remainder of the simulations.  However, the saturation level decreased as the 
thermal energetics became more realistic, from A2 ~100% in the ISO case to about A2 
~10% in the ADI + AV case.  In the ISO case, m = 3-4 saturated at ~10% and ~30% 
respectively and persisted at the same level, but in the ADI + AV case, m = 3-4 reached 
only the ~10% and very quickly died to linear levels (~1% or less).   

In this study, the growth times and pattern periods did not change significantly 
between the simulation with the 1.5x10-2 pc cluster and that with the 1.5x10-3 pc cluster.  
The radial range for m = 2-3 for the simulation with the 1.5x10-3 pc cluster was smaller 
than that with the 1.5x10-2 pc cluster.  This suggests that in the former simulation, the 
disk had a more complicated evolution, probably due to the greater gravitational 
perturbation of the smaller cluster radius.  The m = 2-4 components of the disturbance in 
the simulations with the 1.5x10-2 pc and 1.5x10-3 pc clusters saturated at approximately 
the same level and persisted there for the duration of the simulations.  The m = 2 
component saturated at a slightly greater level in the simulations with the star clusters 
than in the ADI + AV case but still much less than the level in the ISO case.  
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The most remarkable difference between the simulations with a star cluster and 
the isolated models of Paper I was the significant reduction in  τ2, though the radial range 
remained approximately the same; the m = 2 component of the disturbance grew about 
three times faster under the influence of the gravitational environment.  The different 
resolutions of the computational grid cannot account for such a large difference.  In Paper 
I, Pickett et al. tested the effect of resolution on the ISO case by running a simulation 
with resolution (128, 128, 16) and measured τ2 to be 2.2 MIRPs.  As presented in Table 
1, with resolution (128, 64, 16), τ2 was 2.4 MIRPs.  More likely, because the disk model 
proved susceptible to a dominant m = 2 disturbance in previous simulations, the 
gravitational perturbation due to the star cluster merely quickened its growth.   

The gravitational perturbation did not dramatically change the evolution of the 
surface density (Fig. 14).  For the simulation with the 1.5x10-3 pc cluster, more mass 
moved inwards from the initial star-disk boundary at 0.15 Req than in the simulation with 
the 1.5x10-2 pc cluster.  Otherwise, the evolution remained approximately the same 
throughout the rest of the simulation and resembled the evolution of the ADI + AV case. 
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Figure 12: The final equatorial density plots for the simulations with the 1.5x10-2 pc (left) and 1.5x10-3 pc 
clusters (right) at 33.02 MIRPs show more nonaxisymmetric structure than the final image of the ADI + 
AV case (Fig. 7).  The m = 2 component dominated the disturbance in both grayscales, but the structure 
was more coherent and strong in the simulation with the 1.5x10-3 pc cluster.  The dark outline indicates the 
initial size of the protostellar disk model.  In both simulations, the model has expanded due to internal 
heating.  Some mass has been lost radially, but most mass loss occurs vertically.  The star-disk boundary is 
at about 0.15 Req.  The scale is black for ρ = 0.3 and white for ρ = 3x10-7, and the sense of rotation is 
counter-clockwise. 
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Figure 13: These are the final density perturbations plots for the simulations with 1.5x10-2 pc (left) and 
1.5x10-3 pc clusters (right) for m = 2 (top), 3 (middle), and 4 (bottom) at 33.02 MIRPs.  The simulation with 
the 1.5x10-3 pc cluster developed more coherent and strong m = 2-3 components.  The m = 4 components 
for both simulations show very complicated and varied structure throughout the disk.  The scale is black for 
log(Am) = 0 and white for log(Am) = -5, and the sense of rotation is counter-clockwise.
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Figure 14: There was no significant change in the evolution of the surface density Σ of the disk in the 
simulations with 1.5x10-2 pc (top) and 1.5x10-3 pc clusters (middle) and the ADI + AV case (bottom; Fig. 8, 
Paper I; reproduced from Astrophysical Journal).  For all cases, the curves followed the same general trend.  
By 16 MIRPs, some mass around the initial star-disk boundary, at 0.15 Req, fell inward onto the star and 
increased its central density.  Mass also moved outwards onto the disk and most greatly increased the 
density between about 0.3-0.6 Req.  This surface density distribution persisted for the duration of all 
simulations without much change.  The movement of mass at the star-disk boundary was greater for the 
simulation with the 1.5x10-3 pc cluster that for that with the 1.5x10-2 pc cluster.   
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3.3. Model Realism 
The question of which star cluster radius in relation to the protostellar disk model 

best represents reality is crucial to determining the importance of the gravitational 
environment on the formation of substellar companions.  The cluster sizes were varied 
because the protostellar disk model represented a very young and small, in mass and 
radius, protostellar disk.  If the cluster with the smallest radius were the most realistic, the 
surrounding star cluster would prove very important in the evolution of a protostellar 
disk.  In this simulation, the model moved halfway across the computational grid in less 
than 7 MIRPs (Fig. 15).  This suggests that the protostellar disk would be moving very 
quickly through a 1.5x10-4 pc cluster and would likely pass very closely to another object, 
which might lead to a capture or coalescence.  The simulations with the 1.5x10-2 pc and 
1.5x10-3 pc clusters were not very different from each other and barely different from the 
ADI + AV case of Paper I.   

It might initially be suggested that the most realistic cluster size is the 1.5x10-4 pc, 
assuming that the cluster size ought to scale linearly as the protostellar disk size.  If rDISK 
were the radius of the model disk, rOBS the radius of observed protostellar disks, and ROBS 
the radius of observed star clusters, then the magnitude of the appropriate radius for the 
model cluster, RCLUST, would be as follows: 
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If this scaling were correct, it would lend credibility to the 1.5x10-4 pc cluster as an 
appropriate size with respect to the protostellar disk model.  Therefore, the perturbation 
due to the gravitational environment would not be negligible in the evolution of a 
protostellar disk.   

However, a better estimation would be to consider the magnitude of the 
gravitational potential ΦG, the gravitational force FG, and the differential tidal force dFG 
on the protostellar disk by a cluster member M located at a cluster radius R from the disk 
of mass md and radius dr:   

R
Mmd

G =Φ ; (6) 

2R
Mm

F d
G = ; (7) 

dr
R

Mm
dF d

G 3
= . (8) 

For a 1 MSUN object at the observed cluster radius, ~10-1 pc, from a typical 1 MSUN disk 
with radius ~10-103 AU, ΦG is on the order of 10, FG  is about 102, and dFG ranges 
between 104-107.  For the simulations presented in this paper, with a 1 MSUN object at the 
model cluster radii ranging 10-2-10-4 pc from the model disk of mass ~10-1 MSUN and 
radius 10-1 AU, ΦG, FG, and dFG would be as follows: 10, 103, and 105 for a 10-2 pc 
cluster; 102, 105, and 108 for a 10-3 pc cluster; and 103, 107, and 1011 for a 10-4 pc cluster.  
Comparing these values with those for an observed cluster, the 1.5x10-2 pc cluster arises 
as the most realistic size.   
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Figure 15:  The gravitational influence of the 1.5x10-4 pc cluster overwhelmed the capabilities of the 3-D 
hydrodynamics code and rapidly pulled the protostellar model from the computational grid.  These 
equatorial density plots are for the following times: t = 1.69 MIRPs (top left), t = 3.13 MIRPs (top right),    
t = 4.53 MIRPs (bottom left), t = 6.29 MIRPs (bottom right).  The black outline indicates the original size 
and position of the protostellar disk model.  The spiral feature seen in the last three images are not physical 
but artifacts of different portions of the disk sweeping through the center of the computational grid.  
Similarly, the fringing effect on the left side of the t = 6.29 MIRPs is the result of the grid resolution.  The 
scale is black for ρ = 0.3 and white for ρ = 3x10-7, and the sense of rotation is counter-clockwise. 
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4. SUMMARY and CONCLUSION 
 
The current study more realistically modeled the formation of substellar 

companions due to protostellar disk instabilities by including the gravitational influence 
of the stellar environment.  In Paper I, Pickett et al. determined that the internal 
energetics, namely compressional heating at shock fronts from material moving 
azimuthally, stabilized a gravitationally isolated disk model known to be subject to an m 
= 2 mode under more stringent thermal conditions, such as the ISO case.  When the same 
young, small in mass and radius disk model evolved under the gravitational influence of a 
surrounding star cluster, some nonaxisymmetric structure returned.  Several simulations 
were run with clusters of increasingly smaller radii in order to gauge the strength of the 
gravitational perturbation.  In the extreme limit of a 1.5x10-4 pc cluster, which was ~20 
times the size of the disk, the gravitational perturbation overwhelmed the capabilities of 
the computational grid.  There was little change between the simulations with 1.5x10-2 pc 
and 1.5x10-3 pc clusters; they developed some persistent, nonaxisymmetric structure that 
was similar to the structure seen in the ISO case of Paper I.  However, the simulation 
with the 1.5x10-2 pc cluster, which was the most realistic size with respect to the disk 
mass and radius, developed neither persistent condensations nor even a strong, coherent 
mode.  This suggests that the gravitational environment does not greatly affect the 
formation of substellar companions.   

Future improvements to the code would include placing the disk model at the 
bottom of the gravitational potential well due to the star cluster (Fig. 16) and accounting 
for the effect of radiation from the cluster members.  The former modification would 
most likely prevent the center of mass of the disk from moving from the center of the 
computational grid.  If the simulation with the 1.5x10-4 pc cluster were run under this 
condition, the importance of the gravitational environment could be better discerned, 
because the strength and coherence of the disturbances could be quantified and compared 
with the other simulations presented here.  

Radiation from cluster members may prove more important in the evolution of a 
protostellar disk than their gravitational influence.  Most likely, the radiation, in the form 
of ultraviolet photons from even one massive cluster member, would stabilize the disk, 
much as shock heating in the ADI + AV case did.  In fact, photoevaporation would occur, 
leading to significant mass loss.  However, there would also be areas of the disk shielded 
from the radiation and cooler than the neighboring material.  This would presumably 
increase the chance of condensation and, perhaps, substellar companion formation.   

In conclusion, the gravitational effect of the star cluster changed the evolution of a 
well-studied protostellar disk model that was stable to nonaxisymmetric structure.  
However, this study concludes that the effects are not very important.  There are other 
physical conditions to be included in the three-dimensional hydrodynamics code that may 
greatly affect the disk.  But since the gravitational perturbation of a star cluster does not 
hinder the simulations, it should be included in future studies because it increases the 
realism of the modeling. 
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Figure 16: The projection of the effective gravitational potential on the x, y, and z axes for the 1.5x10-2 pc 
(top) and 1.5x10-3 pc clusters (bottom) show the shape of the potential well.  For each Cartesian axis, the 
effective gravitational potential is the absolute difference between ΣΦ−, the potential summed from the 
negative direction, and ΣΦ+, the potential summed from the positive direction.  Most likely, if the disk were 
located at the bottom of the well, it would not move significantly from the center of the computational grid.  
For example, the bottom of the potential well for the simulation with the 1.5x10-2 pc cluster was at about     
-0.5x10-2 pc for x, y, and z, while the disk was initially centered at 3x10-4 pc, as indicated by the vertical 
line.   
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APPENDIX A: STAR CLUSTER CODE 
 
      PROGRAM CLUSTER.F 
 
      REAL :: 
NOBJ,RCLUST,XCLUST,YCLUST,ZCLUST,MLO,MHI,PSCALE,GSEED 
      REAL :: xobj,yobj,zobj,xdif,ydif,zdif,dobj,mobj,prob,mpobj 
      CHARACTER :: clustfile*17 
 
      NOBJ=50 
      XCLUST=60 
      YCLUST=60 
      ZCLUST=60 
      PSCALE=40 
      GSEED=17 
 
C*****Radius of cluster in parsecs***** 
      xobj=0.1 
C*****Radius of disk in AU***** 
      yobj=0.1 
      RCLUST=(xobj*3.086d18)/(yobj*1.496d13)/10 
C*****Mass of disk in solar masses***** 
      mobj=0.5 
C*****Min mass of cluster object in solar masses***** 
      mpobj=0.2 
      MLO=mpobj/mobj 
C*****Max mass of cluster object in solar masses***** 
      mpobj=10. 
      MHI=mpobj/mobj 
 
C******************************************************* 
C     Cluster Construction 
C     Cluster at (XCLUST,YCLUST,ZCLUST) wrt disk axes 
C     RCLUST determines size of cluster 
C     MLO and MHI determines range of object masses 
C     by Kathy Cooksey, Valparaiso University, 10/2002 
C******************************************************* 
      clustfile='clust.test' 
      open(unit=17,file=clustfile) 
 1717 FORMAT(1P5E11.3,1P5E11.3,1P5E11.3,1P5E11.3) 
      call srand(GSEED) 
      write(17,1717)XCLUST,YCLUST,ZCLUST 
      DO i=1,NOBJ 
         xobj=XCLUST+(1-2*rand())*RCLUST 
         yobj=YCLUST+(1-2*rand())*RCLUST 
         zobj=ZCLUST+(1-2*rand())*RCLUST 
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         DO 
            mobj=rand()*MHI 
            prob=rand()*PSCALE 
            mpobj=1./sqrt(mobj**3) 
            if (prob.lt.mpobj.and.mobj.ge.MLO) exit 
         END DO 
         write(17,1717)xobj,yobj,zobj,mobj,prob 
      END DO 
      STOP 
      END 
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APPENDIX B: MAIN LOOP OF MODIFIED 3-D HYDRODYNAMICS CODE 
 
      Program IU3DHYDRO 
C********************************************************************** 
C********************************************************************** 
C...THIS IS A NEW VERSION OF THE HYDRO CODE WHICH IS SECOND-ORDER IN 
BOTH 
C...SPACE AND TIME.  S, T ARE FACE-CENTERED; A,RHO,& EPS ARE CELL- 
C...CENTERED.   AN ENERGY EQUATION IS INCLUDED FOR ENERGY TRANSPORT. 
C...ARTIFICAL VISCOSITY IS USED TO TREAT SHOCKS AND HEAT THE 
MODEL. 
C...THE FOLLOWING SUBROUTINES ARE CALLED: 
C 
C     SETUP    :  Read starting models, impose perts, etc. 
C     SETMODE  :  Suppress mode m.  
C     VLIMIT   :  Limit maximum velocity (usually < 2*SOUND). 
C     DELTA    :  Calculate maximum safe delta time. 
C     RITE     :  Write output information. 
C     SLOPE    :  Calculate van Leer Slope. 
C     VLI      :  Calculate van Leer Monotonic Interpolation. 
C     FLUX     :  Advect S,T,A,RHO, and EPS. 
C     CLEANUP  :  Fix velocities, densities and energy on boundaries. 
C     AVISC    :  Artificial Viscosity. 
C     SOURCE   :  Source S,T,A, and EPS. 
C     VELOCITY :  From momentum densities, calculate velocities. 
C     CENTMASS :  Calculate Center of Mass. 
C     STATE    :  Equation of State. 
C     RAD      :  Radiative Transfer. 
C     IMAGE3D  :  Make 3D density imagens. 
C     REALTR   :  -|Together These Perform a 
C     FFT      :  -|Fast Fourier Transform. 
C     POT3     :  Potential Solver. 
C     ZAXPHI   :  -| 
C     BLKTRI   :  -| 
C     BLKTR1   :  -|Various Functions used in/with the 
C     PRDCT    :  -|Potential Solvers. 
C     COMBP    :  -| 
C     TQLRAT   :  -| 
C     SETBDY   :  Initialization before BDYGEN. 
C     BDYGEN   :  Boundary Potential Solver.   
C     SORT     :  Sort. 
C     INOUT    :  Load a damped model. 
C     DAMP     :  Damp velocities. 
C     CLEARUP  :  Clearup after SETMODE or DAMP call. 
C     TORQUE   :  Calculate instaneous torques. 
C********************************************************************** 
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      PARAMETER (jmax=128,JMAX1=JMAX+1,JMAX2=JMAX+2,KMAX=16) 
      PARAMETER 
(KMAX1=KMAX+1,KMAX2=KMAX+2,LMAX=128,LMAX2=LMAX-2)  
C**********Number of cluster objects from cluster.f********************* 
      PARAMETER (NOBJ=50) 
 
      COMMON/BLOK6/DTHETA,PI,GRAV 
      
COMMON/BLOK7/RCLOUD,CONSTP,DELT,BDYTEM,DEN,TIME,CORMAS,EPSCEN 
      
COMMON/GRID/JREQ,KZPOL,R(JMAX2),Z(KMAX2),RHF(JMAX2),ZHF(KMAX2), 
     &   ROF3N,ZOF3N 
      COMMON/AVIS/QRR(JMAX2,KMAX2,LMAX),QZZ(JMAX2,KMAX2,LMAX), 
     &           QTT(JMAX2,KMAX2,LMAX),CQ,CS 
      REAL JN,mass1,mirp,moneav,totcoefcym(10,8) 
      integer jlmmf(0:10) 
 
      common/relimits/rholmt,epslmt,dumlmt 
      COMMON/EOM/S(JMAX2,KMAX2,LMAX),T(JMAX2,KMAX2,LMAX), 
     &           A(JMAX2,KMAX2,LMAX), 
     &           U(JMAX2,KMAX2,LMAX), 
     &           W(JMAX2,KMAX2,LMAX),JN(JMAX2,KMAX2,LMAX), 
     &           OMEGA(JMAX2,KMAX2,LMAX) 
      
COMMON/STATES/ENON,P(JMAX2,KMAX2,LMAX),CV(JMAX2,KMAX2,LMAX), 
     &           EPS(JMAX2,KMAX2,LMAX) 
      COMMON/LIMIT/SOUND,vlocal(jmax2,kmax2,lmax) 
c      real epsjr,rhojr,ommax 
      integer jreq 
      COMMON/MISC/EPSJR,RHOJR,OMMAX 
      COMMON/POIS/PHI(JMAX2,KMAX2,LMAX),RHO(JMAX2,KMAX2,LMAX) 
      COMMON/INSIDE/TMASS,ENEW,ELOST,EDIF,PHICHK,KLOCAT 
      COMMON/TIMEST/INDX,ISOADI,ALLOW,DMAX,CHGMAX 
      COMMON/COEFS/COEF(JMAX,KMAX2,LMAX2,2) 
      COMMON/ITS/ITSTRT,ITSTOP,ITSTEP 
      REAL KONST,NPRIME 
      COMMON/PTROPE/XN,GAMMA,KONST,NPRIME,TOVERW 
      REAL SS(JMAX2,KMAX2,LMAX),TT(JMAX2,KMAX2,LMAX), 
     &     AA(JMAX2,KMAX2,LMAX),RRHO(JMAX2,KMAX2,LMAX), 
     &     EEPS(JMAX2,KMAX2,LMAX) 
      real volume(jmax2),totcoef(8) 
      integer timc,m 
 
      real massc(jmax2), massf(jmax2),limmf(10),masst 
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      real sumeven(8),sumodd(8),theta(lmax) 
 
C********Cluster Variables, Kathy Cooksey, 2002*************** 
      REAL :: xobj,yobj,zobj,xdif,ydif,zdif,dobj,mobj 
      REAL,DIMENSION(NOBJ,JMAX2,KMAX2,LMAX) :: GRAVPOT 
      CHARACTER :: clustfile*17 
C******************************************************* 
 
      CHARACTER np*2,tw*3 
      CHARACTER tim*6,rhofile*80 
 
      CHARACTER coeffile*17,index*6,modefile*17,centfile*17 
      CHARACTER tcoeffile*17,tcoeftenfile*17 
 
      DATA ISTRDN,CHANGD/25,2.00/,NCONS,DELCON/10,2.0/ 
 
 
  
 
 
      TEMPCD=100.0*CHANGD 
      MSTORE=IFIX(TEMPCD) 
      ITSTEP=0 
      MAXTRM=10 
      ISYM=2 
      ENON=1.d0 
      CONSTP=0 
      BDYTEM=1.E-3 
      CORMAS=1.E-2 
 
c...cq=0 for no AV.  For AV, set CQ=3 
c...cs=0 for no shear viscosity (not implemented yet, so don't diddle!) 
 
      CQ=3.D0 
 
  
      CALL SETUP(ITSTRT,ITSTOP,IDIAG,ISOADI,ISTOR,ITYPE,ITSTEP,ISYM, 
     &           MAXTRM) 
      write(index,'(i6.6)')itstop 
 
c...setup volumes and angles 
 
      do j=2,jmax1 
         volume(j)=0.5d0*dtheta*zof3n*(r(j+1)**2.-r(j)**2.) 
      end do 
      do l=1,lmax 
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         THETA(L)=DTHETA*(L-1) 
      END DO 
 
 
C******************************************************* 
C     Cluster Gravitational Perturbation 
C     Cluster generated by cluster.f 
C     by Kathy Cooksey, Valparaiso University, 10/2002 
C******************************************************* 
      clustfile='clust.000000' 
 
 1717 FORMAT(1P5E11.3,1P5E11.3,1P5E11.3,1P5E11.3) 
      open(unit=17,file=clustfile) 
 
      DO I=1,NOBJ 
         read(17,1717)xobj,yobj,zobj,mobj 
         print*,xobj,yobj,zobj,mobj 
         DO J=2,JMAX2 
            DO K=2,KMAX2 
               DO L=1,LMAX 
                  xdif=xobj-RHF(J)*cos(THETA(L)) 
                  ydif=yobj-RHF(J)*sin(THETA(L)) 
                  zdif=zobj-ZHF(K) 
                  dobj=sqrt(xdif**2+ydif**2+zdif**2) 
                  GRAVPOT(I,J,K,L)=-mobj/dobj 
               END DO 
            END DO 
         END DO 
      END DO 
C******************************************************* 
 
 
      coeffile='coefs.avon.'//index 
      modefile='modes.avon.'//index 
      centfile='c_o_m.avon.'//index 
      tcoeffile='tcoef.avon.'//index 
      tcoeftenfile='tctot.avon.'//index 
 
      OPEN(unit=9,file=coeffile) 
      OPEN(unit=18,file=modefile) 
      OPEN(unit=19,file=centfile) 
      open(unit=13,file=tcoeffile) 
      open(unit=15,file=tcoeftenfile) 
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      CALL RITE(3,-1,1,1,1,1,1,1,1,1,1) 
      CALL CLEARUP 
      CALL RAD(ISOADI) 
      DMAX=0.9*DEN 
      CHGMAX=0.0001 
      MIRP=2.d0*pi/ommax 
  
 
      DO 90 ITSTEP=ITSTRT,ITSTOP 
 
 
         INDX=ITSTEP-ITSTRT 
 
 
         IHEAD=0 
         IF(MOD(INDX,IDIAG).EQ.0) IHEAD=-1 
         IPRINT=0 
         IF(MOD(INDX,IDIAG).EQ.0) IPRINT=1 
         IYES=0 
         IF(MOD(INDX,200).EQ.0) IYES=1 
         CALL DELTA(IYES) 
         TIME=TIME+DELT 
 
C.............................................C 
C.....START SECOND ORDER TIME INTEGRATION.....C 
C.............................................C 
 
C..(1) 1/2 SOURCE S, T, A, RHO, EPS. 
 
         DELT=DELT/2.0 
         CALL SOURCE 
         CALL VELOCITY 
         CALL VLIMIT 
 
 
C..(2) STORE QUANTITIES. 
 
         DO 10 K=1,KMAX2 
         DO 10 J=1,JMAX2 
         DO 10 L=1,LMAX 
            SS(J,K,L)=S(J,K,L) 
            TT(J,K,L)=T(J,K,L) 
            AA(J,K,L)=A(J,K,L) 
            RRHO(J,K,L)=RHO(J,K,L) 
            EEPS(J,K,L)=EPS(J,K,L) 
10       CONTINUE 
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C..(3) 1/2 FLUX S, T, A, RHO, EPS. 
 
         CALL FLUX(S,T,A,RHO,EPS) 
         CALL VELOCITY 
         CALL VLIMIT 
 
 
 
C..(4) 1 FLUX SS, TT, AA, RRHO, EEPS,  
C........BUT USE S, T, A, RHO, EEPS TO CALCULATE FLUXES. 
 
         DELT=2.0*DELT 
         CALL FLUX(SS,TT,AA,RRHO,EEPS) 
 
 
C..(5) UPDATE S, T, A, RHO, EPS. 
 
         DO 20 K=1,KMAX2 
         DO 20 J=1,JMAX2 
         DO 20 L=1,LMAX 
            S(J,K,L)=SS(J,K,L) 
            T(J,K,L)=TT(J,K,L) 
            A(J,K,L)=AA(J,K,L) 
            RHO(J,K,L)=RRHO(J,K,L) 
            EPS(J,K,L)=EEPS(J,K,L) 
 
 20      CONTINUE 
 
 
 
C..(6) 1/2 SOURCE S, T, A, RHO, EPS. 
 
 
         CALL VELOCITY 
         CALL VLIMIT 
         CALL CLEARUP 
 
         CALL RAD(ISOADI) 
 
 
         REDGE=R(JMAX1) 
         CALL BDYGEN(MAXTRM,ISYM,REDGE) 
         CALL POT3(8,IPRINT) 
 
C********Gravitational Perturbation, Kathy Cooksey, 2002********* 
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         DO I=1,NOBJ 
            DO J=2,JMAX2 
               DO K=2,KMAX2 
                  DO L=1,LMAX 
                     PHI(J,K,L)=PHI(J,K,L)+GRAVPOT(I,J,K,L) 
                  END DO 
               END DO 
            END DO 
         END DO 
          
c         DO J=2,JMAX 
c            print*,J,GRAVPOT(1,J,2,1) 
c         END DO 
C********************************************************* 
 
         DELT=DELT/2.0 
         CALL STATE 
         CALL SOURCE 
 
 
 
 
C..(7) UPDATES DUE TO ENERGY EQUATION 
 
         CALL STATE 
 
 
         CALL VELOCITY 
         CALL VLIMIT 
         CALL CLEARUP 
         DELT=2.*DELT 
 
 
 
 
C.............................................C 
C.....COMPLETED ONE TIME STEP INTEGRATION.....C 
C.............................................C 
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APPENDIX C: UNITS 
 

There are several units of time, mass, and length applicable to the simulations of 
the 3-D hydrodynamics code.  Central initial rotation period (CIRP) and minimum initial 
rotation period (MIRP) are best used for simulations of protostars and protostellar disks, 
respectively, in order to relate the time essentially to the number of rotations the object 
has undergone.  Polytropic units (PU) are the dimensionless code units of time, mass, and 
length for any simulation when the model mass, the gravitational constant, and the time-
independent constant of pressure (i.e., the polytropic constant) are set equal to unity.  In 
this manner, the polytropic unit of time, mass, or length corresponds to the physical 
property of the model.  The pertinent quantities of the protostellar disk model studied in 
this paper are as follows: 

45 PU (time) = 1 MIRP 
1 PU (mass) = 0.5 MSUN 
1 PU (length) = 0.1 AU.  (C.1) 

Another useful unit of length is the initial equatorial radius, Req, of the protostellar disk 
model, which is not necessarily the radial size of the computational grid.  For the model 
studied here, Req is at j = 107, and the grid is (128, 128, 16) in (r, ϕ, z).  The star-disk 
boundary is at j = 16 or 0.15 Req.   

It was occasionally necessary to scale the minimum initial rotation period when 
using the analysis programs of Paper I (see § 3.1).  This was accomplished by basically 
defining MIRP’, as follows: 

MIRP’ = 7/4 MIRP = 78.75 PU (time).   (C.2) 
In Figures 8 and 9, the horizontal axis is actually in units of MIRP’.  The growth times 
and errors indicated in Figure 9 are in units of MIRP’.  These values were scaled by 7/4 
to convert them to units of MIRP: 

[τm] = MIRP’ = 7/4 MIRP. (C.3) 
These scaled growth times and errors were quoted in Table 1.  


