

THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC CIV AND SIIV EVOLUTION

Kathy Cooksey NSF Postdoctoral Fellow 14 April 2011

> Collaborators: Rob Simcoe (MIT); Xavier Prochaska (UCSC); Chris Thom (STScI); Hsiao-Wen Chen (Chicago)

WHAT'S TO COME...

- Science drivers
- Observations, analysis, results
- Comparisons with simulations
- Summary

COSMIC CHEMICAL ENRICHMENT CYCLE

Metals form
here. Metals
in ISM.

Metals in extended halo

Inflow:

Infall of previously ejected material; collapsing structure

Outflow:

Galactic winds driven by stellar winds and/or supernovae; AGN-driven winds Metals in low-density IGM.

WHY CIV AND SIIV ABSORBERS?

- Trace fairly common metals
 - And Si may trace O, which is most common
- Observable in optical pass bands for $1.5 \le z \le 5.5$
 - Well-studied with ground-based telescopes
- Resonant absorption-line doublets
 - Characteristic wavelength separation
 - Characteristic rest equivalent width ratio
 - o 2:1 (unsaturated) to 1:1 (saturated) for 1548:1550 and 1393:1402
- \circ Rest wavelengths red-ward of Ly α 1215
 - Outside Lyα forest

METAL ABSORPTION LINES AFFECTED BY...

 Metallicity and relative abundances

- Ionizing background
 - Changes ionization balance
- Physical distribution
 - Function of density and physical size

METAL ABSORPTION LINES AFFECTED BY: IONIZING BACKGROUND AND IONIZATION BALANCE

(Haardt & Madau 1996, 2005)

Local sources (e.g., stellar radiation field) softens background.

At $z \approx 3$, HeII reionization affects UVB around 4 Ryd.

C⁺³ not necessarily dominate C ion but best tracer observationally.

log (# of 1 Ryd photons per H atom)

METAL ABSORPTION LINES AFFECTED BY:

• Absorber line density ~ co-moving number density × physical cross section of absorber

CIV AND SIIV SURVEY AND FINAL SAMPLES

- \circ 38 G = 1 CIV (43 G = 1+2)
 - $\log N(C^{+3}) = 13.2 \text{ to } > 15.3$
- \circ 20 G = 1 SiIV (24 G = 1+2)
 - $\log N(\mathrm{Si}^{+3}) = 12.9 \text{ to } > 14.4$
- o 49 lines of sight (largest to date!)
 - HST STIS and GHRS
 FUSE supplement
 - Pre-Servicing Mission 4

$N(C^{+3})$ and $N(Si^{+3})$ Frequency Distributions

Definition:

$$f(N(\mathbf{C}^{+3})) = \frac{\Delta \mathcal{J}N}{\Delta N(\mathbf{C}^{+3}) \Delta X(N(\mathbf{C}^{+3}))}$$

Power-law model: $f(N(C^{+3})) = k \left(\frac{N(C^{+3})}{N_0}\right)^{\alpha}$

No observed break in f(N).

DEFINING AND MEASURING C+3 MASS DENSITY

Relative to critical density of Universe

$$\Omega_{C^{+3}} = \frac{H_0 m_{C}}{c \rho_{c,0}} \int_{N_{min}}^{N_{max}} f(N(C^{+3})) N(C^{+3}) dN(C^{+3})$$

Approximate by summing column densities

$$\Omega_{C^{+3}} = \frac{H_0 m_C}{c \rho_{c,0}} \sum_{N} \frac{N(C^{+3})}{\Delta X(N(C^{+3}))}$$

• Assume power-law formulism and integrate $f(N(C^{+3})) = k \left(\frac{N(C^{+3})}{N_0}\right)^{\alpha}$

$$\Omega_{C^{+3}} = \frac{H_0 m_C}{c \rho_{c,0}} \frac{k}{2 + \alpha} \left(\frac{N_{\text{max}}^{2+\alpha} - N_{\text{min}}^{2+\alpha}}{N_0^{\alpha}} \right)$$

• Define finite bounds: $13 \le \log N \le 15$

MASS DENSITIES OVER AGE OF UNIVERSE

C+3: Increases by 4 ± 0.5 over high-z variance-weighted mean. Rate: $(0.51\pm0.16) \times 10^{-8}$ Gyr⁻¹ Si⁺³: Increases by 4+3/-1.9 over high-z unweighted median. Rate: $(0.61\pm0.13) \times 10^{-8}$ Gyr⁻¹

ABSORBER LINE DENSITY: EVOLUTION?

 $\overline{\mathrm{d}\mathcal{N}_{\mathrm{CIV}}/\mathrm{d}X}$: Yes! But...

not significant, just statistically significant

 $d\mathcal{N}_{SiIV}/dX$: No! But... high-redshift studies need to be improved...

(Songaila 2001, Pettini+ 2003, Boksenberg+ 2003, Scannapieco+ 2006)

THE C+3 MASS DENSITY "STORY"... NOW UNDER FIRE

IONIC RATIO $N(\mathrm{Si}^{+3})/N(\mathrm{C}^{+3})$

- No evolution with redshift
 - Both samples drawn from same parent population
- \circ $N(\mathrm{Si^{+3}})/N(\mathrm{C^{+3}}) \approx 0.16$ for 12 Gyr!
 - No signature for HeII reionization at $z \approx 3$
- Balanced interplay of three processes:

$$\frac{N(\text{Si}^{+3})}{N(\text{C}^{+3})} = \left(\frac{L_{\text{Si}}}{L_{\text{C}}}\right) \left(\frac{n_{\text{Si}}}{n_{\text{C}}}\right) \left(\frac{\chi_{\text{Si}}^{\text{Si}^{+3}}}{\chi_{\text{C}}^{\text{C}^{+3}}}\right)$$

Must turn to simulations...

OVERWHELMINGLY LARGE SIMULATIONS

See Schaye et al. (2010)

(Schaye & Dalla Vecchia 2008; Dalla Vecchia & Schaye 2008; Wiersma et al 2009a, b; Booth & Schaye 2009; and more!)

- Hydrodynamic cosmological simulations, $z = 127 \rightarrow 0$
 - Gadget III
 - Periodic boundary conditions
 - 2×512³ (baryonic+dark matter) particles
 - 100 h⁻¹ Mpc on a side
- Chemical evolution physics:
 - Radiative cooling by 11 elements
 - Photoionization by UV background in addition to collisional ionization equilibrium
 - Chemodynamics (production and dispersal of elements)

EFFECTS OF CHANGING "FEEDBACK"

- (i.e., movement of material and energy by stars and active galactic nuclei
 - Winds, jets, bubbles,...)
- Feedback affects...
 - Star formation rate
 - Ionization balance
 - Physical distribution...
- Effects felt near, far, and over time

Haas et al. (in prep.)

PROBING CIV AND SIIV IN OWLS UNIVERSES: SIMULATIONS DESCRIPTION

Simulation	What does each really test?
DEFAULT	How well can reference (kinetic) model reproduce observations?
AGB0_SNIa0	Absence of delayed metal production and feedback.
AGN	Effect of AGN (thermal) feedback plus kinetic winds.
MILL	Effect of cosmology (higher σ_8) and more mass in winds.
NOFB	How much can dynamics do for enrichment?
THERMAL_FB	"Next generation": feedback model, cooling, ionizing, cosmology,
WML4	Effect of more mass in winds and reference for MILL (σ_8) .
WMOM	Effect of scaling kinetic wind parameters with v_c (halo mass).
ZCOOL0	Absence of metal-line cooling.

Also use variants of *DEFAULT* to test convergence, resolution, ionization balance (UV background), and abundances (yields).

COMPARING SIMULATIONS TO OBSERVATIONS: $N(C^{+3})$ and $N(Si^{+3})$ Frequency Distributions

C+3: Just need <u>feedback and</u> <u>cooling</u> to reproduce shape. <u>Too few</u> CIV absorbers! <u>Except for THERMAL_FB...?</u> Si⁺³: Just need <u>feedback</u> to reproduce shape but <u>too few</u>. SiIV observations better reproduced with higher σ_8 ?

C⁺³ COLUMN DENSITY MAPS: GALAXIES?

C+3 COLUMN DENSITY MAPS: GALAXIES!

SUMMARY

- o z < 1 C⁺³ and Si⁺³ mass densities increased compared to 1.5 < z < 5 mean/median
- Physical distribution of absorbers "work" to keep $d\mathcal{N}dX$ within factor of two for 12 Gyr
 - Interplay of co-moving number density and cross section
 - CIV and SiIV absorbers likely trace circumgalactic medium more than IGM
 - At low redshift? At all redshifts?!
- o Ionic ratio $N(\mathrm{Si}^{+3})/N(\mathrm{C}^{+3})$ constant for 12 Gyr
 - Processes balance to produce constant ratio...
 - ... future work with OWLS to disentangle